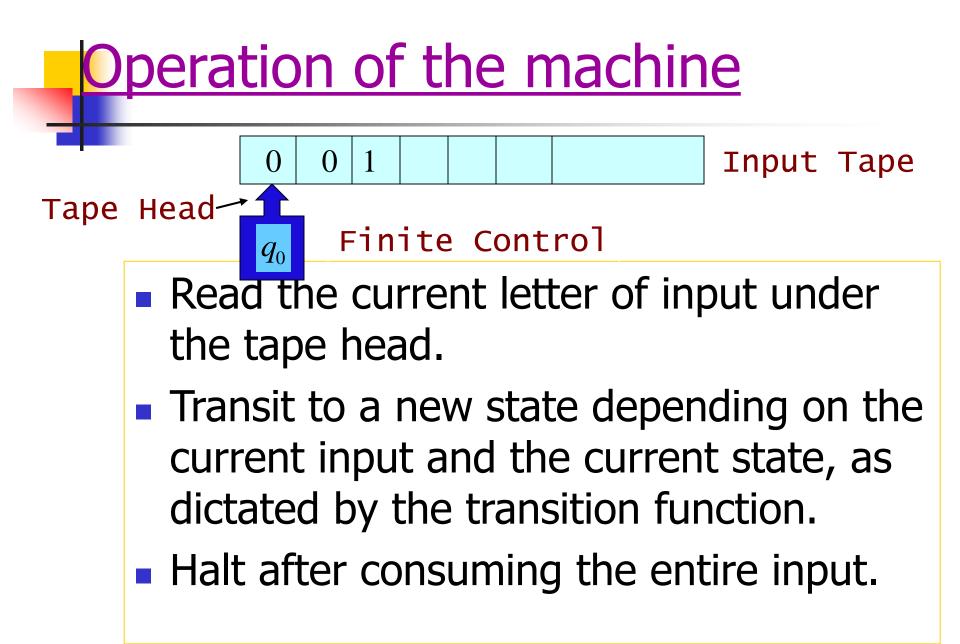
Finite Automata

Finite Automata

Formal Specification of Languages

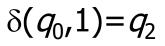
Generators

- Grammars
 - Context-free
 - Regular
- Regular Expressions
- Recognizers
 - Parsers, Push-down Automata
 - Context Free Grammar
 - Finite State Automata
 - Regular Grammar
- A Finite Automata is:
 - a mechanism to recognize a set of valid inputs before carrying out an action.
 - a notation for describing a family of language recognition algorithms.

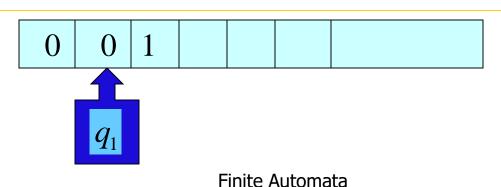


Operation of the machine

- Transitions show the initial state, input, and next state
 - Form: δ(q,a)=b
- Example:
 - δ(q₀,0)=q₁



- Tape head advances to next cell, in state q₁
- What happens now?
 - What is δ(q₁,0)?



Associating Language with the DFA

Machine configuration:

$$[q,\omega]$$
 where $q \in Q, \omega \in \Sigma^*$

• Yields relation:

$$[q, a\omega] \mapsto^*_{M} [\delta(q, a), \omega]$$

• Language: $\{\omega \in \Sigma^* \mid \underbrace{[q_0, \omega] \mapsto^*_{M} [q, \lambda]}_{\bigvee} \land q \in F\}$ Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q:Finite set of states

- Σ : Finite Alphabet
- δ : Transition function
 - a total function from $Q_{X\Sigma}$ to Q
- *q*₀:Initial/Start State
- F:Set of final/accepting state

Finite State Diagram

•A graphic representation of a finite automaton

•A finite state diagram is a directed graph, where nodes represent elements in Q (i.e., states) and arrows are characters in Σ such that:

$$(q_a) \xrightarrow{a} (q_b)$$
 Indicates: $((q_a,a),q_b)$ is a transition in δ

The initial state is marked with:

>

The final state(s) are marked with:

- Deterministic automata each move is uniquely determined by the current configuration
 - Single path
- Nondeterministic automata multiple moves possible
 - Can't determine next move accurately
 - May have multiple next moves or paths

- An automaton whose output response is limited to yes or no is an acceptor
 - Accepts input string and either accepts or rejects it
- Measures of complexity
 - Running time
 - Amount of memory used

- Finite automaton
 - Uses a limited, constant amount of memory
 - Easy to model
 - Limited application

Given an automaton $A = (Q, \Sigma, \delta, q_0, F)$, and a string $w \in \Sigma^*$:

- w is accepted by A if the configuration (q₀,w) yields the configuration (F, ∈), where F is an accepting state
- the language accepted by A, written L(A), is defined by:

 $L(A) = \{w \in \Sigma^* : w \text{ is accepted by } A\}$

Deterministic finite automaton

- Every move is completely determined by the input and its current state
- Finite control device
 - Can be in any one of the states, $q \in Q$
- May contain trap or dead states
- Contains accepting state(s)

Deterministic

Finite Automata

Design a FSA to accept strings of a languagestrings of a's and b's that start and end with a

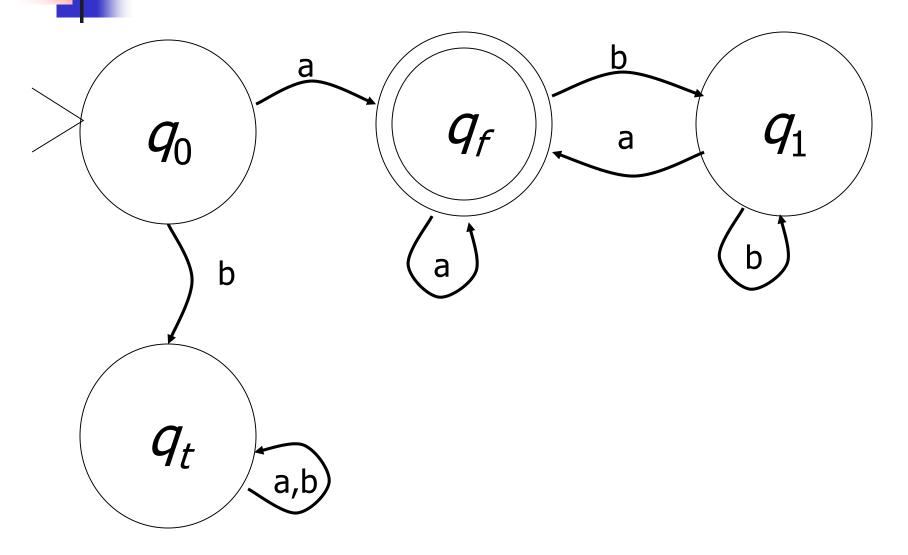
$$M = (Q, \Sigma, \delta, q_0, F)$$

*Q: S*tates are required for the following:

- *q*₀: Start state
- q_t : Trap for strings that start with a b
 - Accepting state can't be reached
 - Machine only accepts strings that start with an a
- q_f : State reached after any a in a string that started with an a
 - The final state
- q_1 : State reached after any b in a string that started with an a

 $\Sigma : \{a,b\}$

$$\begin{split} \delta : & \delta(q_0, \mathbf{a}) = q_f \text{ Is the string } a \text{ in the language?} \\ & \delta(q_0, \mathbf{b}) = q_t \\ & \delta(q_t, \mathbf{a}) = q_t \\ & \delta(q_t, \mathbf{a}) = q_f \\ & \delta(q_f, \mathbf{a}) = q_f \\ & \delta(q_1, \mathbf{a}) = q_f \\ & \delta(q_1, \mathbf{b}) = q_1 \\ \end{split}$$



Vending Machine

- Suppose:
 - All items cost 40¢
 - Coins accepted are 5¢, 10¢, 25¢
 - Recall $M = (Q, \Sigma, \delta, q_0, F)$
 - What are these entities?
 - Q is a set of states
 - What are the possible states?
 - Σ is the alphabet
 - What are the input symbols?
 - δ are the transitions
 - How do we move from state to state?
 - *q*₀ is the starting state
 - Where does the machine start from?
 - F is the final state
 - When does the machine stop?

Vending Machine

- Q: What are the possible states?
 - The status of the machine before and after any of the alphabet symbols have been applied
 - The present state represents how much money has been deposited
 - Could also represent how much is left to deposit
- Σ: What are the input symbols?
 - The coin denominations
- δ: How do we move from state to state?
 - Transition when a coin is deposited
- $q_{0:}$ Where does the machine start from?
 - The beginning!
- F is the final state
 - When does the machine stop?
 - Not before you've deposited enough money
- Wait! What if you put in more than 40¢?

Set of strings over {*a,b*} that contain *bb*

• Design states by parititioning Σ^* .

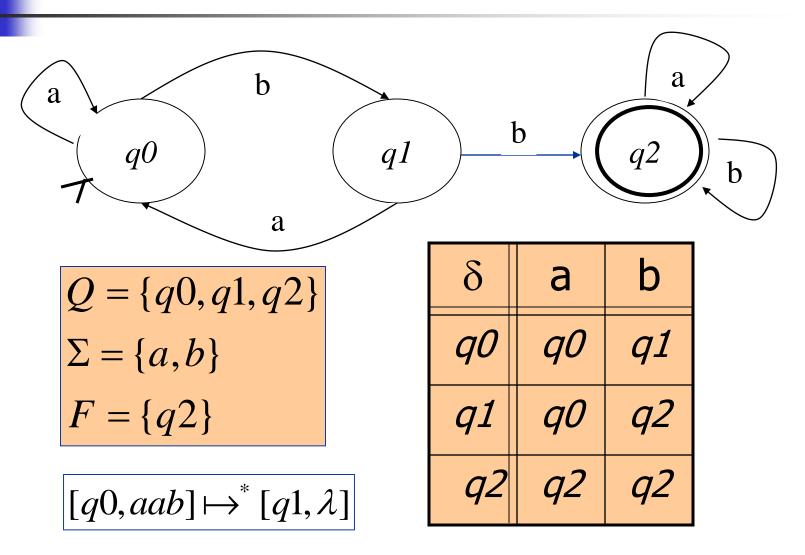
- Strings containing bb
- Strings not containing bb
 - Strings that end in b
 - Strings that do not end in b
- Initial state: q0
- Final state: q2

q2

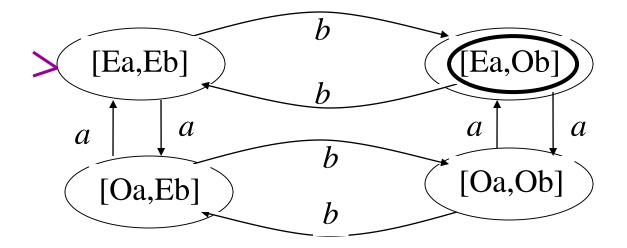
q1

q0

State Diagram and Table



Strings over {*a,b*} containing even number of *a*'s and odd number of *b*'s.



Non-Determinism

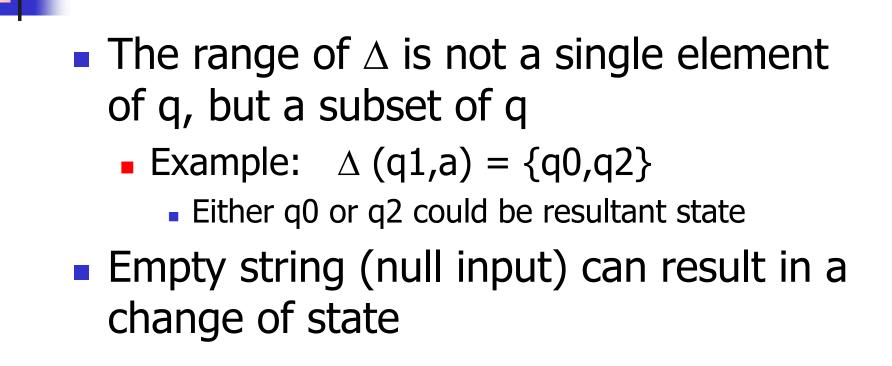
Non-deterministic finite automaton

- More than one destination from a state with a distinct input
- At least one state has transitions that cannot be completely determined by the input and its current state
- It is possible to design a machine where a single input can have two paths to an accepting state
- \in transitions
 - Move from a state without input

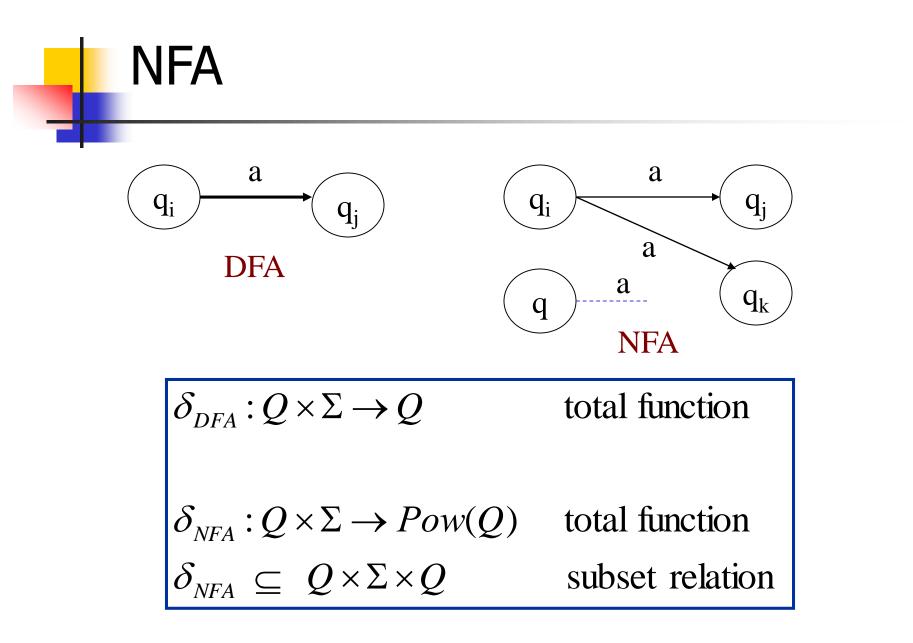
- Quintuple A = (Q, Σ , Δ , s, F) where
 - Q is a finite set of states
 - $\boldsymbol{\Sigma}$ Is an input alphabet

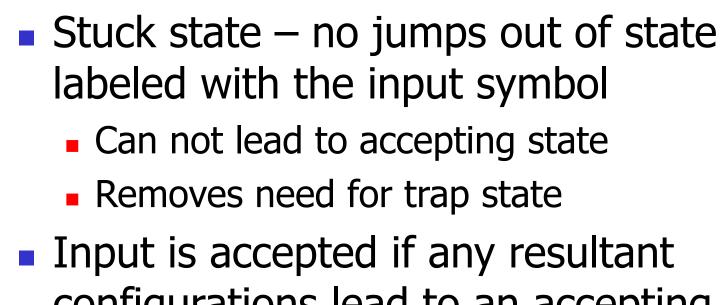
NDFA

- $\Delta \subseteq \mathbb{Q} \times (\Sigma \cup \{\in\}) \times \mathbb{Q}$ is the transition relation
- $S\,\in\,Q$ is the initial state of the automaton
- $\mathsf{F} \subseteq \mathsf{Q}$ is the set of favorable states



NDFA





NDFA

configurations lead to an accepting state

w is accepted by A if at least one of the configurations yielded by (q₀,w) is a configuration of the form (F, ε) with f a favorable state

•
$$L(A) = \{w \in \Sigma^* : w \text{ is accepted by } A\}$$

NDFA

Non-Deterministic

Finite Automata

Language Acceptor (Revisited)

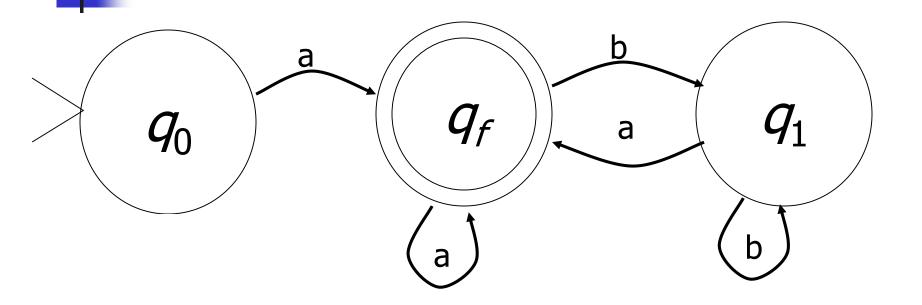
Design a FSA to accept strings of a languagestrings of a's and b's that start and end with a

$$M = (Q, \Sigma, \delta, q_0, F)$$

 \blacksquare Only change is in δ morphing to Δ

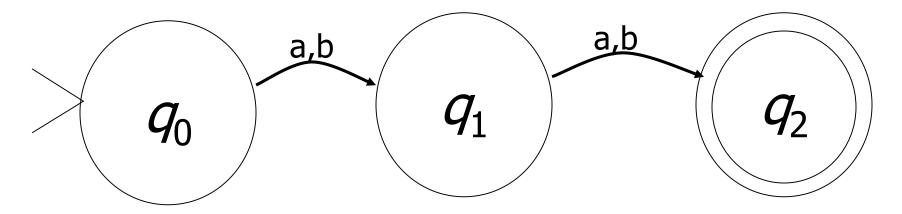
$$M = (Q, \Sigma, \Delta, q_0, F)$$

Some transitions eliminated

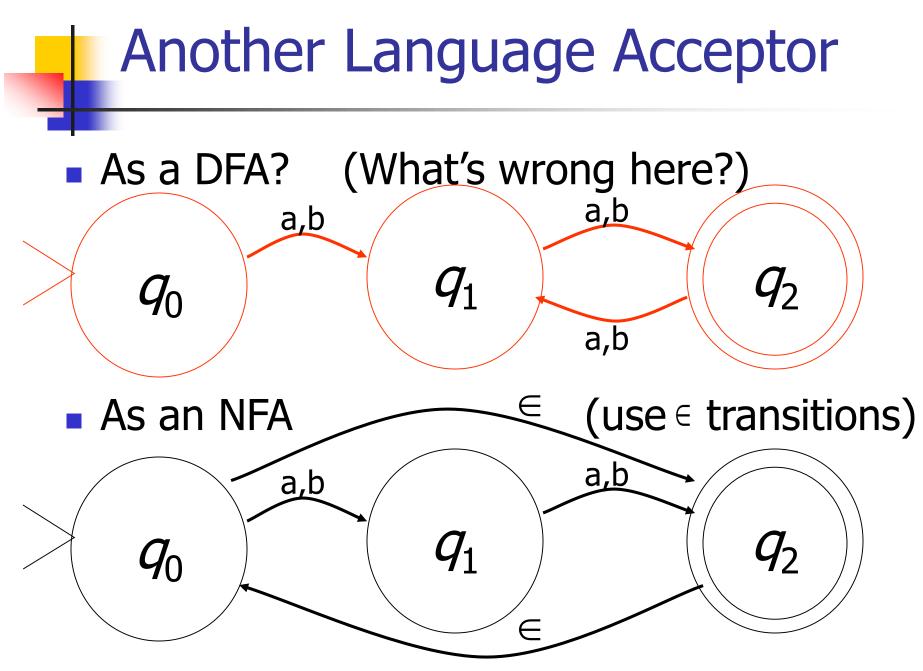


Another Language Acceptor

Build a FA to accept strings of even length



Wait! This only accepts strings of length 2How to update?



Finite Automata